Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xue-Min Duan, ${ }^{\text {a } *}$ Mei-Lian Fan, ${ }^{\text {b }}$ Peng-Wu Zheng, ${ }^{\text {a }}$ Jiang-Sheng Li ${ }^{\text {c }}$ and Peng-Mian Huang ${ }^{\text {c }}$

${ }^{\mathrm{a}}$ School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, People's Republic of China, ${ }^{\text {b }}$ College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China, and ${ }^{\mathrm{c}}$ College of Pharmaceuticals and Biotechnology, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail:

dxmlhp@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.038$
$w R$ factor $=0.111$
Data-to-parameter ratio $=12.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography All rights reserved

2-(4-Chlorophenyl)-5-methyl-1H-pyrazol-3(2H)-one

In the title compound, $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{ClN}_{2} \mathrm{O}$, the benzene ring is twisted with respect to the pyrazole plane, with a dihedral angle of $15.81(11)^{\circ}$. The centroid-to-centroid separation of 3.721 (4) \AA indicates $\pi-\pi$ stacking between parallel benzene rings.

Comment

The tautomerism of pyrazolin-5-ones is well known. The crystal structure of the title compound, (I), exhibits the NH tautomer in the crystal state.

(I)

The molecular structure of (I) is illustrated in Fig. 1. The pyrazole ring is essentially planar, with a mean deviation of $0.0155 \AA$, but atom $\mathrm{H} 2 A$ is not coplanar with the ring plane, showing an $s p^{3}$ hybrid nature for atom N 2 . The dihedral angle between the pyrazole and benzene ring planes is $15.81(11)^{\circ}$. The bond lengths and angles are normal (Table 1).
$\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonding occurs in the crystal structure of (I) (Table 2) and $\pi-\pi$ stacking is also observed between parallel benzene rings (Fig. 2), the centroid-to-centroid and face-to-face separations being 3.721 (4) and 3.466 (6) Å, respectively.

Experimental

2-(4-Chlorophenyl)-5-methyl-1 H -pyrazol-3(2H)-one was prepared according to the literature method of $\mathrm{Liu} \& \mathrm{Li}$ (2004). Single crystals of (I) suitable for X-ray analysis were obtained by evaporation of an ethanol solution.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{10} \mathrm{H}_{9} \mathrm{ClN}_{2} \mathrm{O} \\
& M_{r}=200.64 \\
& \text { Triclinic, } P \overline{1} \\
& a=5.885(5) \AA \\
& b=7.704(7) \AA \\
& c=11.38(1) \AA \\
& \alpha=105.980(13)^{\circ} \\
& \beta=94.719(14)^{\circ} \\
& \gamma=101.250(13)^{\circ}
\end{aligned}
$$

Received 9 March 2006 Accepted 16 April 2006
$V=481.4$ (7) \AA^{3}
$Z=2$
$D_{x}=1.439 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.36 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Block, colourless
$0.30 \times 0.26 \times 0.22 \mathrm{~mm}$

Figure 1
The molecular structure of (I), with 30% probability displacement ellipsoids (arbitrary spheres for H atoms).

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.899, T_{\text {max }}=0.925$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$

$$
\left.\begin{array}{rl}
w= & 1 /[
\end{array} \sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.054 P)^{2}\right)
$$

$S=1.07$
1669 reflections
132 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected bond lengths (\AA).

$\mathrm{Cl} 1-\mathrm{C} 4$	$1.753(2)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.417(2)$
$\mathrm{O} 1-\mathrm{C} 7$	$1.256(2)$	$\mathrm{N} 1-\mathrm{C} 7$	$1.392(2)$
$\mathrm{N} 1-\mathrm{N} 2$	$1.400(2)$	$\mathrm{N} 2-\mathrm{C} 9$	$1.355(3)$

Table 2
Hydrogen-bond geometry ($\AA \AA^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.84(3)$	$1.90(3)$	$2.737(3)$	$179(2)$

[^0]

Figure 2
The $\pi-\pi$ stacking between parallel benzene rings of (I). [Symmetry code: (ii) $1-x,-y, 1-z$.]

Methyl H atoms were placed in calculated psitions, with $\mathrm{C}-\mathrm{H}=$ $0.96 \AA$, and the torsion angles were refined to fit the electron density. They were treated as riding, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$. Aromatic H atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}=0.93 \AA$, and they were refined in riding mode, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. Atom $\mathrm{H} 2 A$ was located in a difference Fourier map and refined isotropically.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

This work was supported by the Foundation of Fine Chemicals Engineering Research Centre for Universities of Jiangxi Province of China.

References

Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Liu, W.-D. \& Li, J.-S. (2004). Chin. J. Pestic. Sci. 6, 17-21.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: Symmetry code: (i) $x+1, y, z$.

